
March 1999 The Delphi Magazine 45

One Last Compile...
Onwards and upwards

Sometimes I think learning Delphi is like climbing a
hill. When you first start off you’re rather daunted

by the size of the task ahead of you. The bottom of the
hill is rather slippery and difficult, and you wonder
deep down whether you’ve got the strength of charac-
ter to get all the way to the top. Then, almost before you
know it, you’re a reasonable way up and it’s not as bad
as you thought. Maybe the slope isn’t quite so steep
any more. And hey, the view’s pretty good. Lots of
things seem a lot clearer now than when you began.
Sure, there’s a lot of hill left, but by golly you’re going to
crack on to that summit. And then usually somebody
comes along and asks me why I’m staring out of the
window.

I think I’ve made a few strides further towards the
summit in the last month. I’ve done a few things, used a
few more features, and suddenly I’m aware of how
much more I know than I did three years ago. It’s not
just the ability to be able to do things in Delphi, it’s also
this awareness that I’ve acquired about whether I’m
doing things the right way or not. It’s getting harder for
me to do things the wrong way... no, hold on, danger-
ous statement, it’s always easy to do things the wrong
way. But now at least I have a little voice in the back of
my head scolding me, telling me that I should really be
putting all of this code into its own class, and gosh, isn’t
this code terribly tightly coupled to all these other
units?

Example: I’ve just discovered the joys of the reposi-
tory and, in particular, being able to store forms as tem-
plates. Which is a bit silly really, as it’s been in Delphi
for ages and it’s certainly old hat to most of you, but
I’ve never played with it before. (Going back to my hill
metaphor, there are always masses of people miles
ahead of you, and there never seems to be anybody
behind.) The facility to build up a library of forms and
then inherit or copy their functionality is just wonder-
ful. One of my boss’s pet peeves is having lots of forms
which are slightly inconsistent in their layout, I always
like to have the Close button somewhere different each
time, and now I can just copy a standard template and
all those things will be taken care of for me.

Anyway, me discovering the repository several
decades after everybody else is not the point of my
story. No, the thing is that having discovered the repos-
itory I then spent lots of time playing with it and, of
course, soon accumulated huge numbers of forms. I
discovered that components and controls that I’d
placed on templates couldn’t be deleted from descen-
dant forms. The forms had quite a lot in common, but a
few needed to be slightly different. Not a big problem, I
could always change the visible properties on the com-
ponents I didn’t need and hide them that way. A bit
messy, but feasible. But my little voice said what I
should be doing is building a hierarchy of templates,
with the stuff that was common to all forms at the very

top, then introducing different variations as I went
down the list. Then I could just inherit from the appro-
priate point in the hierarchy.

See? Very OO, very Delphi. I didn’t do it, of course,
because I was in a hurry for an executable (I always am)
and it was quicker to shovel everything to the side of
the form and make it all invisible, but nobody’s perfect.

It gets better. Having acquired all of these forms, I
then needed a master form to control the creation of
them. It gets a bit tedious, writing all of these MyForm :=
TMyForm.Create(Application) statements. If only, I
mused, there was some bit of wizardry to automate the
creation of these forms. I could just pass it the name of
the kind of form I wanted, it could create it and pass me
back a pointer. Gosh, said my little voice, that sounds
just like a factory pattern, you know, one of those
patterny things that you keep reading about but
haven’t got around to understanding yet.

So I went and hunted around and found the copy of
the Gang of Four’s Patterns book and read about facto-
ries. I read the section twice, in fact. It’s an important
book, and I urge you to buy it. Sadly, I didn’t under-
stand a word, so I went back to producing endless lines
of very similar but slightly different bits of code.

You may think this a tad pathetic, but the important
thing for me is that I now know about OO and Patterns.
Understanding them properly will take longer. And one
day, I’m sure, I’ll be using them. In coding, as in climb-
ing hills, it’s important not to rush these things.


